A Suspended Microchannel with Integrated Flow Studies Temperature Sensors for High-pressure
نویسنده
چکیده
A freestanding microchannel, with integrated temperature sensors, has been developed for highpressure . flow studies. These microchannels are approximately 20pm x 2pm x 4400pm, and are suspended above 80 pm deep cavities, bulk micromachined using BrF3 dry etch. The calibration of the lightly boron-doped thermistor-type sensors shows that the resistance sensitivity of these integrated sensors is parabolic with respect to temperature and linear with respect to pressure. Volumetric flow rates of N2 in the microchannel were measured at inlet pressures up to 578psig. The discrepancy between the data and theory results from the flow acceleration in a channel, the nonparabolic velocity profile, and the bulging of the channel. Bulging effects were evaluated by using incompressible water flow measurements, which also measures 1 .045~10-~N-s/m~ for the viscosity of DI water. The temperature data from sensors on the channel shows the heating of the channel due to the friction generated by the high-pressure flow inside.
منابع مشابه
A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN MICROCHANNELS (RESEARCH NOTE)
Three-dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in microchannels with small rectangular sections having specific hydraulic diameters and distinct geometric configurations were investigated numerically. The numerical results indicated that the laminar heat transfer was to be dependent upon the aspect ratio and the ratio of the hydraulic...
متن کاملSuspended microchannel resonators for biomolecular detection
We have demonstrated a new approach for detecting biomolecular mass in the aqueous environment. Known as the suspended microchannel resonator (SMR), target molecules flow through a suspended microchannel and are captured by receptor molecules attached to the interior channel walls [1]. As with other resonant mass sensors, the SMR detects the amount of captured target molecules via the change in...
متن کاملNumerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel
In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...
متن کاملMems Flow Sensors for Nano-fluidic Applications
This paper presents micromachined thermal sensors for measuring liquid flow rates in the nanoliter-per-minute range. The sensors use a boron-doped polysilicon thinfilm heater that is embedded in the silicon nitride wall of a microchannel. The boron doping is chosen to increase the heater’s temperature coefficient of resistance within tolerable noise limits, and the microchannel is suspended fro...
متن کاملThree dimensional numerical study on a trapezoidal microchannel heat sink with different inlet/outlet arrangements utilizing variable properties nanofluid
Nowadays, microchannels as closed circuits channels for fluid flow and heat removal are an integral part of the silicon-based electronic microsystems. Most of previous numerical studies on microchannel heat sinks (MCHS) have been performed for a two-dimensional domain using constant properties of the working fluid. In this study, laminar fluid flow and heat transfer of variable properties Al2O3...
متن کامل